TRAFFIC IMPACT ANALYSIS

Project:

4205 Buena Vista
In Dallas, Texas

Prepared for:
City of Dallas

On behalf of:
LBS Realty Partners, LLC

Prepared by:

stere E. stoner
Steve E. Stoner, P.E., PTOE

1 Pacheco Koch

7557 Rambler Road, Suite 1400

Dallas, Texas 75231-2388
(972) 235-3031 www.pkce.com

TX.REG: ENGINEERING FIRM F-469
TX. REG. SURVEYING FIRM LS-100080-00

EXECUTIVE SUMMARY

The services of Pacheco Koch were retained by LBS Realty Partners, LLC, to prepare a Traffic Impact Analysis (TIA) for the proposed mixed-use development (the "Project") located at 4205 Buena Vista Street in Dallas, Texas. The Project is expected to contain approximately 8,175 square feet of ground-floor commercial uses, 10,000 square feet of office use, and 34 multifamily dwelling units. Buildout of the Project is estimated to occur 2021. A TIA is required for review by the City of Dallas as part of the Owner's request for creation of a new PD Subdistrict for the subject property.

The purpose of this report is to estimate the incremental impact on the background traffic operational conditions caused by the proposed development within a specific study area as determined by standardized engineering analyses. The study parameters used in this TIA are based upon the requirements of the city and are consistent with the standard industry practices used in similar studies.

Based upon the analyses performed herein, Pacheco Koch developed the following findings and recommendations, where applicable.

FINDING: N Fitzhugh Avenue is a major thoroughfare that carries high traffic volumes during peak hour periods. Currently, the roadway utilizes approximately 64% of the theoretical daily roadway capacity. Buena Vista Street is a low-volume local street that utilizes less than 20% of the theoretical daily roadway capacity.

FINDING: This study analyzed existing traffic operations during peak traffic periods at several intersections in the vicinity of the subject site. Study area intersections include the traffic-signal-controlled intersection of N Fitzhugh Avenue at Travis Street and the unsignalized intersections of N Fitzhugh Avenue at Buena Vista Street, N Fitzhugh Avenue at Abbott Avenue, and Buena Vista Street at Lee Street. The signalized intersection of Fitzhugh at Travis operates very efficiently with a very good Level of Service. The allway stop-controlled intersection of Buena Vista at Lee also operates efficiently at a very good Level of Service. For the minor-street-STOPcontrolled intersections of Fitzhugh at Buena Vista and Fitzhugh at Abbott, the minor street approaches and the left-turns from Fitzhugh experience moderate to heavy delays during peak traffic periods. Such conditions are common for unsignalized intersections on major roadways and cannot be operationally mitigated without installation of a traffic signal. However, neither intersection meets the warrant criteria required to install a traffic signal.

FINDING: After the addition of estimated background traffic growth and projected traffic generated by the proposed development, the traffic operations within the study area were reanalyzed. Each of the study area intersections will experience slight increases in average delay. However, the increases attributable to the project do not appreciably change the
traffic operational conditions that are otherwise expected to occur. Therefore, no required roadway or operational improvements are required to mitigate the impact of the proposed development.

Site Location Map

1 Valet Entrance Level (499')

TRAFFIC IMPACT ANALYSIS 4205 Buena Vista
 Dallas, Texas

TABLE OF CONTENTS

EXECUTIVE SUMMARY
SITE LOCATION MAP iii
PRELIMINARY SITE PLAN iv
INTRODUCTION 1
Purpose 1
Project Description 2
Study Parameters 2
Study Area 3
TRAFFIC IMPACT ANALYSIS 4
Approach 4
Background Traffic Volume Data 4
Existing Volumes 4
Projected Background Traffic Volumes 4
Site-Related Traffic 5
Trip Generation and Mode Split 5
Trip Distribution and Assignment 6
Site-Generated Traffic Volumes 6
Traffic Operational Analysis —Roadway Links 6
Description 6
Summary of Results 7
Traffic Operational Analysis — Roadway Intersections 8
Description 8
Analysis Traffic Volumes 10
Summary of Results 10
SUMMARY OF FINDINGS AND RECOMMENDATIONS 12

LIST OF TABLES:

Table 1. Development Program Summary
Table 2. Historical Daily Traffic Volume Data
Table 3. Projected Trip Generation Summary
Table 4. Roadway Link Capacity Analysis Results Summary
Table 5. Peak Hour Intersection Capacity Analysis Results Summary (Signalized Intersections)
Table 6. Peak Hour Intersection Capacity Analysis Results Summary (Unsignalized Intersections)

LIST OF EXHIBITS:
Exhibit 1. Site Location and Study Area Map
LIST OF APPENDICES:
Appendix A. Traffic Volume Exhibits
Appendix B. Detailed Traffic Volume Data Appendix C. Site-Generated Traffic Supplement
Appendix D. Detailed Intersection Capacity Analysis Results

INTRODUCTION

The services of Pacheco Koch (PK) were retained by LBS Realty Partners, LLC to prepare a Traffic Impact Analysis for a proposed mixed-use development located at 4205 Buena Vista Street in Dallas, Texas. A proposed site plan for the Project, prepared by Michael Hsu - Office of Architecture, and a site location map (Exhibit 1) are provided following the EXECUTIVE SUMMARY section of this report.

In order to facilitate development of the Project, LBS Realty Partners, LLC (the "Applicant") has made a request to the City of Dallas (the "Approving Agency") for creation of a new PD Subdistrict for the subject property. As part of application process for this request, submittal of a TIA by the Applicant to the Approving Agency is required.

This TIA was prepared by traffic engineers at Pacheco Koch (the "Engineer") in accordance with industry and local standards. Pacheco Koch is a licensed engineering firm based in Dallas, Texas, that provides professional engineering and related services.

Purpose

A Traffic Impact Analysis (TIA) is a engineering study used to provide information on the projected off-site impacts produced by a specific Project on the traffic operations of public traffic facilities. Commissioning a TIA may be required by an Approving Agency when an Applicant is seeking approvals or entitlements for the Project, such as a change in zoning rights. Using standardized analysis methodologies, if the findings of the TIA indicate that the direct impacts attributed to a Project result in degradation of the conditions that would otherwise occur from an "acceptable" condition to an "unacceptable" condition, the Approving Agency may, within certain legal parameters, require the Applicant to fund the improvement(s) needed to mitigate the impacts. A TIA is used to identify when such instances are projected to occur.

A TIA should be prepared by a licensed Engineer skilled in the principles of traffic and transportation engineering and planning. The general methodologies, processes, and guidelines used in a TIA are established by industry standardswhich are maintained by organizations such as the Institute of Transportation Engineers (ITE) and others-although, the project-specific parameters of the study (e.g., study locations, analysis scenarios, analytical assumptions, etc.) may be advised by technical staff of the Approving Agency.

When applicable the Engineer may provide recommendations or suggested modifications that, in the Engineer's opinion could improve overall traffic operations, safety, site access, circulation, etc. Such recommendations may or may not be directly related to the Project. However, implementation of any modifications is subject to approval of the respective agency that is responsible for the operation of the facilities. Also, the Engineer's suggested or recommended
modifications should not be considered mandatory and are not intended to assign or imply funding responsibility.

A TIA is not a detailed site plan review nor a substitute for local or regional transportation planning.

Project Description

The Project will consist of multiple land uses and below-grade parking within a single, multi-level building. Buildout of the Project is estimated to occur 2021. A summary of the proposed development program, by phase, is provided in Table 1.

Table 1. Development Program Summary

USE	FUTURE AMOUNT
Multifamily	34 Dwelling Units
Office	$10,000 \mathrm{SF}$
Commercial	$8,175 \mathrm{SF}$

NOTE: The development program provided above is based upon the most current and complete information available at the time of this study publication.

The site will have two points of vehicular access-one driveway will be located on Buena Vista Street and a right-in-/right-out-only driveway will be located on N Fitzhugh Avenue. The property will also have direct access to the Katy Trail.

The 0.626 -acre subject site is currently zoned PD 193 (GR). Prior uses on the site include a commercial building of approximately 4,588 square feet (vacant at the time of traffic data collection).

Study Parameters

The study parameters used in this TIA are based upon industry standard practices and requirements of the City of Dallas. Project-specific study parameters were reviewed with the city staff at the outset of the study.

This TIA analyzed the day-to-day traffic operations on the public roadway system at time periods that have the greatest combined volume of the background traffic and site-related traffic. Due to the predominant influence of background traffic, the weekday AM and PM peak hours of adjacent street traffic are typically analyzed.

The analysis scenarios addressed in this study include the following:

- at existing conditions ("Existing" scenario)
- at site buildout year without site-generated traffic ("Background" scenario)
- at site buildout year with site-generated traffic ("Buildout" scenario)
- at five years after site buildout ("Horizon" scenario)

NOTE: Analyses of all future conditions scenarios utilize projected traffic volumes derived by Pacheco Koch using reasonable and customary assumptions that are based upon existing conditions where possible. ITE appropriately points out that, due to natural changes in traffic
patterns that occur over time, the margin of error for projected traffic volumes increases as the length of time of the projection increases; and, any projection of hourly turning movement volumes beyond five years inherently contain significant assumptions.

Study Area

The study area for a TIA is typically defined to allow an assessment of the most relevant traffic impacts to the local area. The extent of the study area is discretionary but is generally commensurate with the scale of the proposed development. Special localized factors may also be considered. The specific locations included in the study area of this TIA are listed below and depicted in Exhibit 1 .

Traffic-Signal-Controlled Intersections:
(a) Travis Street and N Fitzhugh Avenue

STOP-Sign-Controlled Intersections:
(b) N Fitzhugh Avenue at Abbott Avenue
(c) N Fitzhugh Avenue at Buena Vista Street
(d) Buena Vista Street and Lee Street

Roadway Links:
(A) Fitzhugh Avenue, adjacent to site

- Existing operation and cross-section: six lanes, two-way operation, median-divided
- City of Dallas Thoroughfare Plan Designation: Minor Arterial, M-6$D(B)$
- Current Daily Traffic Volume: 31,747 (Thursday, March 29, 2018)
- Posted Speed Limit: 30 mph
(B) Buena Vista Street, adjacent to site
- Existing operation and cross-section: two lanes, two-way operation, undivided
- City of Dallas Thoroughfare Plan Designation: none (i.e., local street)
- Current Daily Traffic Volume: 1,455 (Thursday, March 29, 2018)
- Posted Speed Limit: 30 mph

TRAFFIC IMPACT ANALYSIS

The following is a description of the analyses performed as part of this Traffic Impact Analysis.

Approach

The TIA presented in this report analyzed the operational conditions for the peak hours and study area as defined above using standardized analytical methodologies where applicable. Current (or recent) traffic volume data were collected on a typical day throughout the study area to represent existing traffic conditions. Where applicable, growth factors were applied to the existing volumes to project future background traffic at the site buildout year conditions. Then, traffic generated by the proposed development was projected using the standard four-step approach: Trip Generation, Mode Split, Trip Distribution, and Traffic Assignment. By adding the site-generated traffic to the background traffic, the resulting site-plus-background traffic impact to operational conditions may be assessed from which approach mitigation measures may be recommended, if needed.

Background Traffic Volume Data

Existing Volumes

Current traffic volumes were collected during the analysis periods at the study area intersections on March 29, 2018. Traffic volumes are graphically summarized in Appendix A; detailed data sheets are provided in Appendix B.

Projected Background Traffic Volumes

Background traffic growth is defined as the normal growth of traffic that is not directly related to the subject development of this study. A review of historical traffic volume data can provide an indication of the local traffic growth patterns. Table 2 provides a comparison of recent traffic volumes with prior traffic volumes in the vicinity of the subject site, from which PK calculated an annual growth rate.

Table 2. Historical Daily Traffic Volume Data

ROADWAY SEGMENT	HISTORICAL DAILY VOLUME (DATE)	ANNUAL GROWTH RATE
N Fitzhugh Avenue, west of	21,062 ('09) A	1.53%
Buena Vista St.	19,520 ('04) A	-2.78%

Data Source: A = TxDOT
According to these data, traffic volumes in the vicinity of the subject site appear to generally appear to be generally stable over time with slight fluctuations. Although no consistent positive growth is evident, Pacheco Koch assumed a growth rate of one percent (1.0\%) per year to estimate future background traffic volumes.

By applying the assumed growth rate(s) described previously, future background traffic volumes at the Project buildout year were calculated for the study area intersections. These volumes are graphically summarized in Appendix A.

Site-Related Traffic

Trip Generation and Mode Split

Trip generation is calculated in terms of "trip ends" - a trip end is a one-way vehicular trip entering or exiting a site driveway (i.e., a single vehicle entering and exiting a site represents two trip ends). Trip generation for this Project was calculated using the Institute of Transportation Engineers (ITE) Trip Generation manual ($10^{\text {th }}$ Edition). ITE Trip Generation is a compilation of actual, vehicular traffic volume generation data and statistics by land use as collected over several decades by creditable sources across the country. Using the ITE equations and rates is an accepted methodology to calculate the projected site-generated traffic volumes for many land uses (though engineering judgment is strongly advised).

The base trip generation data from ITE generally reflect average conditions for a standalone use on a typical day. However, in some cases, the Engineer may judge that other factors may be of sufficient significance to warrant adjusting the base ITE calculations in order to more accurately reflect Project-specific conditions. For this analysis "internal trip capture" was considered to be of sufficient significance to justify adjustment of the base ITE data.
"Internal trip capture" refers to the phenomenon that some portion of the trips generated by a given use originates from within the same site and, therefore, do not impact the external roadway network. The methodology used to calculate internal trip capture is recognized by ITE. The most current research and data collection is presented in the Transportation Research Board's NCHRP Report 684 (2011).
"Mode split" is the consideration of trips being conducted by all modes of transportation, including public transit, bicycle, walking, etc. The default trip generation data from ITE are assumed to incorporate "typical" mode split characteristics. Additional adjustments to account for mode split are only applied in special cases when mode split is expected to be especially high. For this analysis a five percent (5\%) reduction was applied to the base ITE data to account for bicycle/walking mode split due to the close proximity of and convenient access to the Katy Trail from the subject site.

Table 3 provides a summary of the calculated net total trip ends generated by the project. Supplemental information used in the trip generation calculations is provided in Appendix C.

Table 3. Projected Trip Generation Summary (Net)

SCENARIO	DAILY TRIP ENDS (WEEKDAY)	AM PEAK HOUR TRIP ENDS (ADJACENT STREET PEAK)	PM PEAK HOUR TRIP ENDS (ADJACENT STREET PEAK)
		Total (In/Out)	Total (In/Out)
Proposed Uses	1,399	79 (51/28)	66 (36/30)

NOTE: Trip generation from prior uses were not deducted from the projected trip generation volumes shown above.

Trip Distribution and Assignment

The distribution and assignment of site-generated trip ends to the surrounding roadway system is determined by proportionally estimating the orientation of travel via various travel routes. This is a subjective exercise based upon professional judgment considering such factors as directional characteristics of existing local traffic, trip attributes (e.g., trip purpose, trip length, travel time, etc.), roadway features (e.g., capacity, operational conditions, character of environment), regional demographics, etc.

Traffic for the proposed redevelopment was distributed and assigned to the study area roadway network based upon consideration of the factors listed above. Detailed trip distribution and traffic assignment calculations and results are summarized in Appendix C.

Site-Generated Traffic Volumes

Site-generated traffic is calculated by multiplying the trip generation value (from Table 3) by the corresponding traffic assignments (from Appendix C). The resulting cumulative (for all uses) peak period site-generated traffic volumes at buildout of the Project are graphically summarized in Appendix A.

Traffic Operational Analysis —Roadway Links

Description

A roadway link is a segment of roadway between two intersections. Roadway link capacity analysis is a comparison of actual or forecasted traffic volumes to the theoretically optimum roadway capacity. The capacity of the roadway link is predominantly a function of the roadway's cross-section (i.e., number of lanes, lane widths, type of center divider, etc.). However, other more theoretical factors also apply, such as the character of environment and the functional classification of the roadway. Generally, roadway link capacity is less critical than intersection capacity; however, it can provide a gage of the utilization of given roadway.

A specific industry standard for roadway link capacity does not exist, but the typical concept is derived from a base saturation flow rate (i.e., the maximum theoretical rate of continuous flow under ideal, unobstructed conditions -- in the traffic engineering industry, this value is generally considered to range between $1,900-2,100$ vehicles per lane per hour). A series of adjustment factors are then applied to the saturation flow rate to reflect the characteristics of a given location.

The North Central Texas Council of Governments (NCTCOG) - the metropolitan planning agency for the Dallas-Fort Worth region - has derived internal "hourly service volume" guidelines used for transportation modelling purposes. The NCTCOG values were based upon the principals presented in the Highway Capacity Manual with "regional calibration" factors applied. Though these perlane capacities, or "Service Volumes" (summarized in the table below), are intended for modelling purposes, they do provide a reasonable gage of theoretical capacity.

Area Type	Hourly Service Volumes By Roadway Function					
	Principal Arterial		 Frontage Road		 Local Street	
	Median- Divided or One-Way	Undivided Two-Way	Median- Divided or One-Way	Undivided Two-Way	Median- Divided or One-Way	Undivided Two-Way
CBD	725	650	725	650	475	425
Urban/ Commercial	850	775	$\mathbf{8 2 5}$	750	525	$\mathbf{4 7 5}$
Residential	925	875	900	825	575	525
Rural	1,025	925	975	875	600	550

To determine the utilization of a roadway, the volume:capacty ratio can be calculated - a v/c ratio of less than 1.0 indicates that the roadway is operating under capacity. NCTCOG's Level of Service denominations are as follows:

Volume:Capacity Ratio $\leq 25 \%$ is LOS A,
Volume:Capacity Ratio $>25 \%$ and $\leq 45 \%$ is LOS B,
Volume:Capacity Ratio $>45 \%$ and $\leq 65 \%$ is LOS C,
Volume:Capacity Ratio $>65 \%$ and $\leq 80 \%$ is LOS D.
Volume:Capacity Ratio $>80 \%$ and $\leq 100 \%$ is LOS E,
Volume:Capacity Ratio $\geq 100 \%$ is LOS F

Summary of Results

For roadways adjacent to or in the vicinity of the subject site, the volume/capacity ratio was calculated for existing and site buildout conditions. A summary of the link capacity analysis is provided in Table 4. See specific recommendations in the Recommendations section of this report.

Table 4. Roadway Link Capacity Analysis Results Summary

ROADWAY/ SCENARIO	DAILY VOLUME	THEORETICAL DAILY CAPACITY	V:C RATIO/ LEVEL OF SERVICE
N Fitzhugh Avenue	31,747	49,500	$0.64-\mathrm{C}$
Existing Conditions	32,709	49,500	$0.66-\mathrm{D}$
Buildout Year-Background Conditions	33,408	49,500	$0.67-\mathrm{D}$
Buildout Year-Buildout Conditions	1,455	9,500	$0.15-\mathrm{A}$
$\underline{\text { Buena Vista Street }}$	1,499	9,500	$0.16-\mathrm{A}$
Existing Conditions	1,919	9,500	$0.20-\mathrm{A}$
Buildout Year-Background Conditions			
Buildout Year-Buildout Conditions			

Traffic Operational Analysis —Roadway Intersections

Description

The level of performance of civil infrastructure can often be measured through an analysis of volume and capacity that considers various physical and operational characteristics of the system. For vehicular traffic an operational analysis of roadway intersection capacity over a 60-minute period is the most detailed type of analysis. An industry-standardized methodology for this type of analysis was developed by the Transportation Research Board and is presented in the Highway Capacity Manual (HCM). HCM uses the term "Level of Service" (or, LOS) to qualitatively describe the efficiency using a letter grade of A through F. Generally, LOS can be described as follows:

> LOS A $=$ free, unobstructed flow
> LOS $B=$ reasonably free flow
> LOS $C=$ stable flow
> LOS $D=$ approaching unstable flow
> LOS E $=$ unstable flow, operating at design capacity
> LOS $=$ operating over design capacity

Traffic operational analysis is typically measured in one-hour periods during day-today peak conditions. In most urban settings, LOS C, or better, is desirable, although LOS D is considered to be acceptable in urban conditions; LOS E indicates a facility or maneuver is approaching capacity, while LOS F is theoretically an over-capacity condition. On highly-utilized transportation facilities, brief periods of LOS E or F conditions are not uncommon for during peak periods. In some cases measures to increase capacity, either through operational changes and/or physical improvements, can be identified to improve efficiency and sometimes raise Level of Service.

For traffic-signal-controlled ("signalized") intersections and STOP-controlled ("unsignalized") intersections, LOS is determined based upon the calculated average seconds of delay per vehicle. For signalized intersections the average delay per vehicle can be effectively calculated for the entire intersection; however, for unsignalized intersections the average delay per vehicle is calculated only by approach or by individual traffic maneuvers that must stop or yield right-ofway.

NOTE: The HCM unsignalized intersection analysis methodology was developed and calibrated for low-to-moderate volume intersections. When applied to intersections with one or more high-volume or highcapacity approaches, the analyses often reflect poor results (i.e., low Level of Service). However, the actual delay/operational conditions are typical of similar locations and do not necessarily represent unique conditions. Low-performing, high-volume, unsignalized intersections cannot be analytically mitigated unless a traffic signal is installed. (Traffic signal installation is subject to a detailed analysis of established criteria AND approval of the responsible agency. Neither Level of Service nor vehicle delay is a warrant for traffic signal installation.)

The following table summarizes the LOS criteria for signalized and unsignalized intersections as defined in the latest edition of the Highway Capacity Manual.

	Signalized Intersection (Average Delay per Vehicle)	Unsignalized Intersection (Average Delay per Vehicle)
LOS A	≤ 10	≤ 10
LOS B	$>10-\leq 20$	$>10-\leq 15$
LOS C	$>20-\leq 35$	$>15-\leq 25$
LOS D	$>35-\leq 55$	$>25-\leq 35$
LOS E	$>55-\leq 80$	$>35-\leq 50$
LOS F	>80	>50

Analysis Traffic Volumes

Determination of the traffic impact associated with the Project is measured by comparing the incremental change in operational conditions during peak periods with and without site-related traffic. Appendix A provides exhibits summarizing the following:

- Existing traffic volumes during study peak hours
- Projected Background traffic volumes at the Site Buildout Year during study peak hours
- Projected Site-Generated traffic volumes during study peak hours
- Projected Background-plus-Site-Generated traffic volumes at the Site Buildout Year during study peak hours
- Projected 2026 traffic volumes, including Site-Generated traffic during study peak hours

A summary of the existing intersection/roadway geometry and traffic control devices is also graphically summarized in Appendix A.
Summary of Results
Intersection capacity analyses presented in this study were performed using the Synchro software package. Table 5 and Table 6 provide a summary of the peak period intersection operational conditions under the analysis conditions presented previously. Detailed software output is provided in Appendix D.

Table 5. Peak Hour Intersection Capacity Analysis Results Summary (Signalized Intersections)

INTERSECTION	EXISTING CONDITIONS		BACKGROUND CONDITIONS		BUILDOUT CONDITIONS		HORIZON CONDITIONS	
	AM	PM	AM	PM	AM	PM	AM	PM
Travis Street @ N Fitzhugh Avenue	$\underset{(5.5)}{\mathrm{A}}$	$\begin{gathered} \text { A } \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (5.6) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (9.0) \end{gathered}$	$\underset{(6.1)}{\mathrm{A}}$	$\begin{gathered} \text { A } \\ (9.6) \end{gathered}$	$\begin{gathered} \text { A } \\ (6.7) \end{gathered}$	$\begin{gathered} B \\ (10.0) \end{gathered}$

NOTE: Traffic signal operational parameters used in this analysis were based upon actual traffic signal operational characteristics observed in the field at the time of data collection.

Table 6. Peak Hour Intersection Capacity Analysis Results Summary (Unsignalized Intersections)

INTERSECTION	TRAFFICMANEUVER	EXISTING CONDITIONS		BACKGROUND CONDITIONS		$\begin{gathered} \text { BUILDOUT } \\ \text { CONDITIONS } \end{gathered}$	
		AM	PM	AM	PM	AM	PM
Abbott Avenue @ N Fitzhugh Avenue	EBL	$\begin{gathered} C \\ (23.0) \\ \hline \end{gathered}$	$\begin{gathered} C \\ (23.7) \end{gathered}$	$\begin{gathered} C \\ (24.1) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (25.7) \\ \hline \end{gathered}$	$\begin{gathered} C \\ (24.6) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (26.6) \\ \hline \end{gathered}$
	SB	$\begin{array}{r} \text { D } \\ (27.4) \\ \hline \end{array}$	$\begin{gathered} \text { B } \\ (14.9) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (29.4) \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ (15.2) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (37.8) \\ \hline \end{gathered}$	$\begin{gathered} \text { C } \\ (22.4) \\ \hline \end{gathered}$
Buena Vista Street @ N Fitzhugh Avenue	NB	$\begin{gathered} \mathrm{E} \\ (35.4) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (>100) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (39.8) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (>100) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (48.9) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (>100) \\ \hline \end{gathered}$
	EBL	$\begin{gathered} C \\ (23.0) \\ \hline \end{gathered}$	$\begin{gathered} C \\ (23.7) \end{gathered}$	$\begin{gathered} C \\ (24.1) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (25.7) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (27.4) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ (28.5) \\ \hline \end{gathered}$
	WBL	$\begin{array}{r} B \\ (13.1) \\ \hline \end{array}$	$\begin{gathered} \mathrm{E} \\ (47.5) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (13.3) \\ \hline \end{gathered}$	$\begin{gathered} \text { F } \\ (52.6) \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ (13.4) \\ \hline \end{gathered}$	$\begin{gathered} \text { F } \\ (52.6) \\ \hline \end{gathered}$
	SB	$\begin{gathered} D \\ (33.1) \end{gathered}$	$\begin{gathered} F \\ (>100) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (35.5) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (>100) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (49.1) \\ \hline \end{gathered}$	$\begin{gathered} F \\ (>100) \\ \hline \end{gathered}$
Buena Vista Street @ Lee Street	WB	$\begin{gathered} \text { A } \\ (8.8) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (9.8) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (8.8) \\ \hline \end{gathered}$	$\begin{gathered} \text { A } \\ (9.9) \\ \hline \end{gathered}$	$\begin{array}{r} \text { A } \\ (9.0) \\ \hline \end{array}$	$\begin{gathered} \text { B } \\ (10.0) \\ \hline \end{gathered}$
	SBL	$\begin{gathered} \mathrm{A} \\ (7.3) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.8) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.3) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.8) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.3) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.8) \\ \hline \end{gathered}$
Buena Vista Street @ Site Driveway 1	NBL	-	-	-	-	$\begin{gathered} \mathrm{A} \\ (7.3) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (7.3) \\ \hline \end{gathered}$
	EB	-	-	-	-	$\begin{gathered} \mathrm{A} \\ \text { (9.2) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (9.9) \\ \hline \end{gathered}$
Site Driveway 2 @ N Fitzhugh Avenue	SB	-	-	-	-	$\begin{gathered} \text { C } \\ (17.7) \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ \text { (13.2) } \\ \hline \end{gathered}$

KEY:
A, B, C, D, E, F = Level-of-Service
NB-, SB-, EB-, WB- = intersection approach AM = AM Peak Hour of Adjacent Street
(\#\#.\#) = Average Seconds of Delay Per Vehicle $-L,-T,-R=$ Left, Through, Right turning movement PM = PM Peak Hour of Adjacent Street

SUMMARY OF FINDINGS AND RECOMMENDATIONS

NOTE: Recommendations presented in this report reflect the opinion of Pacheco Koch based solely upon technical analysis and professional judgment but are not intended to infer mandates or funding responsibility. Any proposed improvements in the public right-of-way are subject to approval of the responsible agency(-ies). Should the approving agency determine that any off-site improvements are required for approval of the Project, legal precedents apply with regard to jurisdiction and funding allocation.

The following findings are based upon buildout of the subject property in accordance with the hypothetical development scenario outlined in the Project Description section of this report. Recommendations are provided where applicable.

FINDING: N Fitzhugh Avenue is a major thoroughfare that carries high traffic volumes during peak hour periods. Currently, the roadway utilizes approximately 64% of the theoretical daily roadway capacity. Buena Vista Street is a low-volume local street that utilizes less than 20% of the theoretical daily roadway capacity.

FINDING: This study analyzed existing traffic operations during peak traffic periods at several intersections in the vicinity of the subject site. Study area intersections include the traffic-signal-controlled intersection of N Fitzhugh Avenue at Travis Street and the unsignalized intersections of N Fitzhugh Avenue at Buena Vista Street, N Fitzhugh Avenue at Abbott Avenue, and Buena Vista Street at Lee Street. The signalized intersection of Fitzhugh at Travis operates very efficiently with a very good Level of Service. The allway stop-controlled intersection of Buena Vista at Lee also operates efficiently at a very good Level of Service. For the minor-street-STOPcontrolled intersections of Fitzhugh at Buena Vista and Fitzhugh at Abbott, the minor street approaches and the left-turns from Fitzhugh experience moderate to heavy delays during peak traffic periods. Such conditions are common for unsignalized intersections on major roadways and cannot be operationally mitigated without installation of a traffic signal. However, neither intersection meets the warrant criteria required to install a traffic signal.

FINDING: After the addition of estimated background traffic growth and projected traffic generated by the proposed development, the traffic operations within the study area were reanalyzed. Each of the study area intersections will experience slight increases in average delay. However, the increases attributable to the project do not appreciably change the traffic operational conditions that are otherwise expected to occur. Therefore, no required roadway or operational improvements are required to mitigate the impact of the proposed development.

Appendix A. Traffic Volume Exhibits

Appendix B. Detailed Traffic Volume Data

ROADWAY: Buena Vista Street
LOCATION: Adjacent to site
DAY: Thursday
DATE: March 29th
YEAR: 2018

SOURCE: CJ Hensch \& Associates, Inc

START TIME	Northbound			
	0:00	0:15	0:30	0:45
12:00 AM	0	2	2	0
1:00 AM	0	0	1	1
2:00 AM	0	2	2	0
3:00 AM	0	1	0	0
4:00 AM	0	0	1	0
5:00 AM	0	2	0	2
6:00 AM	0	4	0	1
7:00 AM	9	12	14	14
8:00 AM	18	9	6	9
9:00 AM	10	12	11	11
10:00 AM	6	9	11	6
11:00 AM	7	7	9	10
12:00 PM	12	8	11	15
1:00 PM	15	7	6	6
2:00 PM	10	4	10	5
3:00 PM	10	13	13	17
4:00 PM	18	21	32	32
5:00 PM	44	64	61	55
6:00 PM	43	34	25	21
7:00 PM	18	15	16	7
8:00 PM	12	9	7	14
9:00 PM	6	12	6	5
10:00 PM	7	10	4	3
11:00 PM	2	7	5	3

Southbound			
$0: 00$	$0: 15$	$0: 30$	$0: 45$
1	0	2	1
0	0	0	0
0	0	0	0
1	0	0	0
0	0	1	0
1	2	0	2
1	4	1	4
4	13	16	8
11	12	6	15
7	9	9	5
10	6	9	8
9	6	8	5
6	8	5	7
8	7	7	5
7	6	7	7
9	2	7	9
9	11	9	7
6	10	10	6
10	10	7	4
7	6	5	2
3	2	2	2
2	5	1	0
2	2	2	2
2	4	0	0

Totals		
NB	SB	Bi-Direct.
4	4	8
2	0	2
4	0	4
1	1	2
1	1	2
4	5	9
5	10	15
49	41	90
42	44	86
44	30	74
32	33	65
33	28	61
46	26	72
34	27	61
29	27	56
53	27	80
103	36	139
224	32	256
123	31	154
56	20	76
42	9	51
29	8	37
24	8	32
17	6	23

ROADWAY: N Fitzhugh Avenue
LOCATION: Adjacent to site
DAY: Thursday
DATE: March 29th
YEAR: 2018
sOURCE: CJ Hensch \& Associates, Inc

	Eastbound				Westbound				Totals		
start time	0:00	0:15	0:30	0:45	0:00	0:15	0:30	0:45	EB	WB	Bi-Direct.
12:00 AM	29	34	26	22	18	22	26	12	111	78	189
1:00 AM	16	14	11	8	13	17	10	12	49	52	101
2:00 AM	9	7	15	12	10	9	10	11	43	40	83
3:00 AM	10	6	6	12	11	8	7	12	34	38	72
4:00 AM	6	10	16	22	12	12	15	25	54	64	118
5:00 AM	13	25	30	40	48	62	84	101	108	295	403
6:00 AM	39	69	72	88	132	162	184	209	268	687	955
7:00 AM	118	158	199	191	229	259	275	302	666	1065	1731
8:00 AM	202	194	191	192	305	355	360	318	779	1338	2117
9:00 AM	221	182	154	180	322	303	291	299	737	1215	1952
10:00 AM	152	180	185	148	279	261	245	253	665	1038	1703
11:00 AM	160	182	198	216	248	233	221	214	756	916	1672
12:00 PM	236	235	234	230	208	200	212	210	935	830	1765
1:00 PM	207	219	246	230	189	193	185	191	902	758	1660
2:00 PM	226	280	268	258	172	189	190	184	1032	735	1767
3:00 PM	328	320	320	322	172	189	186	190	1290	737	2027
4:00 PM	366	384	494	480	194	203	214	216	1724	827	2551
5:00 PM	526	518	524	529	218	219	216	203	2097	856	2953
6:00 PM	514	485	415	361	214	239	214	216	1775	883	2658
7:00 PM	366	312	298	270	169	149	135	136	1246	589	1835
8:00 PM	224	244	192	253	139	126	116	85	913	466	1379
9:00 PM	145	137	137	128	100	87	90	79	547	356	903
10:00 PM	124	120	96	104	82	78	56	59	444	275	719
11:00 PM	75	69	72	62	38	43	37	38	278	156	434
									EB	WB	Bi-Direct.
							-Hou	Total:	17,453	14,294	31,747
		8:15 AM	9:15 AM		Direct.)	AM Pe	Hou	Total:	798	1,355	2,153
		5:00 PM	6:00 PM		Direct.)	PM Pe	Hou	Total:	2,097	856	2,953
		5:00 PM	6:00 PM		Hig	st By	rectio		2,097	-	\bigcirc
		8:15 AM	$9: 15$ AM		High	t By D	ection	WB):	-	1,355	\cdots

Appendix C. Site-Generated Traffic Supplement

○
Study Area Intersection (Signalized)
—— Road-Tube Counts
© - Traffic Signal
\square - Study Area Intersection (Unsignalized)

Site Generated Trip Distribution - Inbound

○
Study Area Intersection (Signalized)
—— Road-Tube Counts

- - Traffic Signal
\square - Study Area Intersection (Unsignalized)

Site Generated Trip Distribution - Outbound

	Development Program			Weekday Trip Ends						
	Land Use	Quantity	Units	Weekday Daily	AM Peak - Adjacent Street			PM Peak - Adjacent Street		
					In	Out	Total	In	Out	Total
Use "A"	Shopping Center	3,175	SF	120	2	1	3	6	6	12
Use "B"	High-Turnover Restaurant	5,050	SF	567	28	22	50	30	19	49
Use "C"	Office	10,000	SF	114	31	5	36	2	11	13
Use "D"	Apartment	34	DU	216	4	13	17	14	9	23
Subtotal (no adjustments)		,		1017	65	41	106	52	45	97
Ped/Trans Reductions	-	,		51	3	2	5	3	2	5
Internal Capture	-	,			11	11	22	13	13	26
Subtotal	-	,		966	51	28	79	36	30	66

NCHRP 684 Internal Trip Capture Estimation Tool				
Project Name:	Buena Vista	Organization:	Pacheco Koch	
Project Location:	Dallas, TX	Performed By:	AJV	
Scenario Description:	Mixed Use Development	Date:	7/25/2018	
Analysis Year:	2018	Checked By:	DES	
Analysis Period:	AM Street Peak Hour	Date:		

Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips ${ }^{3}$		
	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office		10,000	SF	36	31	5
Retail		3,175	SF	3	2	1
Restaurant		5,050	SF	50	28	22
Cinema/Entertainment				0		
Residential		34	DU	17	4	13
Hotel				0		
All Other Land Uses ${ }^{2}$				0		
				106	65	41

Table 2-A: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ. ${ }^{4}$	\% Transit	\% Non-Motorized	Veh. Occ. ${ }^{4}$	\% Transit	\% Non-Motorized
Office	1.00		5\%	1.00		5\%
Retail	1.00		5\%	1.00		5\%
Restaurant	1.00		5\%	1.00		5\%
Cinema/Entertainment	1.00		5\%	1.00		5\%
Residential	1.00		5\%	1.00		5\%
Hotel	1.00		5\%	1.00		5\%
All Other Land Uses ${ }^{2}$	1.00		5\%	1.00		5\%

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)								
Origin (From)								
	Office	Retail	Restaurant	Cinema/Entertainment	Residential			
Office								
Retail								
Restaurant								
Cinema/Entertainment								
Residential								
Hotel								

Table 4-A: Internal Person-Trip Origin-Destination Matrix*							
Origin (From)		Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel	
Office		1	3	0	0	0	
Retail	0		0	0	0	0	
Restaurant	4	0		0	0	0	
Cinema/Entertainment	0	0	0		0	0	
Residential	0	0	3	0	0	0	
Hotel	0	0	0	0	0	0	

Table 5-A: Computations Summary				Table 6-A: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	106	65	41	Office	13\%	80\%
Internal Capture Percentage	21\%	17\%	27\%	Retail	50\%	0\%
				Restaurant	21\%	18\%
External Vehicle-Trips ${ }^{5}$	80	52	28	Cinema/Entertainment	N/A	N/A
External Transit-Trips ${ }^{6}$	0	0	0	Residential	0\%	23\%
External Non-Motorized Trips ${ }^{6}$	4	2	2	Hotel	N/A	N/A

${ }^{1}$ Land Use Codes (LUCs) from Trip Generation Manual , published by the Institute of Transportation Engineers.
${ }^{2}$ Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
${ }^{3}$ Enter trips assuming no transit or non-motorized trips (as assumed in ITE Trip Generation Manual).
${ }^{4}$ Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made
to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.
${ }^{5}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.
${ }^{6}$ Person-Trips
*Indicates computation that has been rounded to the nearest whole number.
Estimation Tool Developed by the Texas A\&M Transportation Institute - Version 2013.1

Project Name:	Buena Vista					
Analysis Period:	AM Street Peak Hour					
Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends						
Land Use	Table 7-A (D): Entering Trips			Table 7-A (O): Exiting Trips		
	Veh. Occ.	Vehicle-Trips	Person-Trips*	Veh. Occ.	Vehicle-Trips	Person-Trips*
Office	1.00	31	31	1.00	5	5
Retail	1.00	2	2	1.00	1	1
Restaurant	1.00	28	28	1.00	22	22
Cinema/Entertainment	1.00	0	0	1.00	0	0
Residential	1.00	4	4	1.00	13	13
Hotel	1.00	0	0	1.00	0	0

Table 8-A (0): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		1	3	0	0	0
Retail	0		0	0	0	0
Restaurant	7	3		0	1	1
Cinema/Entertainment	0	0	0		0	0
Residential	0	0	3	0		0
Hotel	0	0	0	0	0	

Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		1	6	0	0	0
Retail	1		14	0	0	0
Restaurant	4	0		0	0	0
Cinema/Entertainment	0	0	0		0	0
Residential	1	0	6	0		0
Hotel	1	0	2	0	0	

Table 9-A (D): Internal and External Trips Summary (Entering Trips)						
Destination Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	4	27	31	26	0	1
Retail	1	1	2	1	0	0
Restaurant	6	22	28	21	0	1
Cinema/Entertainment	0	0	0	0	0	0
Residential	0	4	4	4	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

Table 9-A (0): Internal and External Trips Summary (Exiting Trips)						
Origin Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	4	1	5	1	0	0
Retail	0	1	1	1	0	0
Restaurant	4	18	22	17	0	1
Cinema/Entertainment	0	0	0	0	0	0
Residential	3	10	13	9	0	1
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

${ }^{1}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

${ }^{2}$ Person-Trips

${ }^{3}$ Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator
*Indicates computation that has been rounded to the nearest whole number.

Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)						
Land Use	Development Data (For Information Only)			Estimated Vehicle-Trips ${ }^{3}$		
	ITE LUCs ${ }^{1}$	Quantity	Units	Total	Entering	Exiting
Office		10,000	SF	13	2	11
Retail		3,175	SF	12	6	6
Restaurant		5,050	SF	49	30	19
Cinema/Entertainment				0		
Residential		34	DU	23	14	9
Hotel				0		
All Other Land Uses ${ }^{2}$				0		
				97	52	45

Table 2-P: Mode Split and Vehicle Occupancy Estimates						
Land Use	Entering Trips			Exiting Trips		
	Veh. Occ. ${ }^{4}$	\% Transit	\% Non-Motorized	Veh. Occ. ${ }^{4}$	\% Transit	\% Non-Motorized
Office	1.00		5\%	1.00		5\%
Retail	1.00		5\%	1.00		5\%
Restaurant	1.00		5\%	1.00		5\%
Cinema/Entertainment	1.00		5\%	1.00		5\%
Residential	1.00		5\%	1.00		5\%
Hotel	1.00		5\%	1.00		5\%
All Other Land Uses ${ }^{2}$	1.00		5\%	1.00		5\%

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office						
Retail						
Restaurant						
Cinema/Entertainment						
Residential						
Hotel						

Table 4-P: Internal Person-Trip Origin-Destination Matrix*									
Origin (From)		Destination (To)						Residential	
	Office	Retail	Restaurant	Cinema/Entertainment	Rel	0			
Office		0	0	0	0	0			
Retail	0		2	0	0	0			
Restaurant	1	3		0	2	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	0	1	2	0	0	0			
Hotel	0	0	0	0	0	0			

Table 5-P: Computations Summary				Table 6-P: Internal Trip Capture Percentages by Land Use		
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	97	52	45	Office	50\%	0\%
Internal Capture Percentage	27\%	25\%	29\%	Retail	67\%	67\%
				Restaurant	13\%	32\%
External Vehicle-Trips ${ }^{5}$	67	37	30	Cinema/Entertainment	N/A	N/A
External Transit-Trips ${ }^{6}$	0	0	0	Residential	29\%	33\%
External Non-Motorized Trips ${ }^{6}$	4	2	2	Hotel	N/A	N/A

[^0]Estimation Tool Developed by the Texas A\&M Transportation Institute - Version 2013.1

Project Name:	Buena Vista					
Analysis Period:	PM Street Peak Hour					
Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends						
Land Use	Table 7-P (D): Entering Trips			Table 7-P (O): Exiting Trips		
	Veh. Occ.	Vehicle-Trips	Person-Trips*	Veh. Occ.	Vehicle-Trips	Person-Trips*
Office	1.00	2	2	1.00	11	11
Retail	1.00	6	6	1.00	6	6
Restaurant	1.00	30	30	1.00	19	19
Cinema/Entertainment	1.00	0	0	1.00	0	0
Residential	1.00	14	14	1.00	9	9
Hotel	1.00	0	0	1.00	0	0

Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		2	0	0	0	0
Retail	0		2	0	2	0
Restaurant	1	8		2	3	1
Cinema/Entertainment	0	0	0		0	0
Residential	0	4	2	0		0
Hotel	0	0	0	0	0	

Table 8-P (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)						
Origin (From)	Destination (To)					
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	1	0	1	0
Retail	1		9	0	6	0
Restaurant	1	3		0	2	0
Cinema/Entertainment	0	0	1		1	0
Residential	1	1	4	0		0
Hotel	0	0	2	0	0	

Table 9-P (D): Internal and External Trips Summary (Entering Trips)						
Destination Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	1	1	2	1	0	0
Retail	4	2	6	2	0	0
Restaurant	4	26	30	25	0	1
Cinema/Entertainment	0	0	0	0	0	0
Residential	4	10	14	9	0	1
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

Table 9-P (0): Internal and External Trips Summary (Exiting Trips)						
Origin Land Use	Person-Trip Estimates			External Trips by Mode*		
	Internal	External	Total	Vehicles ${ }^{1}$	Transit ${ }^{2}$	Non-Motorized ${ }^{2}$
Office	0	11	11	10	0	1
Retail	4	2	6	2	0	0
Restaurant	6	13	19	12	0	1
Cinema/Entertainment	0	0	0	0	0	0
Residential	3	6	9	6	0	0
Hotel	0	0	0	0	0	0
All Other Land Uses ${ }^{3}$	0	0	0	0	0	0

${ }^{1}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

[^1]Appendix D. Detailed Intersection Capacity Analysis Results
：Travis Street \＆N Fitzhugh Avenue

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个个t		\％	个中t			\dagger			\dagger	
Traffic Volume（vph）	60	694	15	25	1193	41	37	36	22	35	13	68
Future Volume（vph）	60	694	15	25	1193	41	37	36	22	35	13	68
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	65	754	16	27	1297	45	40	39	24	38	14	74
Shared Lane Trafic（\％）												
Lane Group Flow（vph）	65	770	0	27	1342	0	0	103	0	0	126	0
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split（s）	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split（s）	55.0	55.0		55.0	55.0		20.0	20.0		20.0	20.0	
Total Split（\％）	73．3\％	73．3\％		73．3\％	73．3\％		26．7\％	26．7\％		26．7\％	26．7\％	
Yellow Time（s）	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All－Red Time（s）	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time（s）	4.5	4.5		4.5	4.5			4.5			4.5	
Lead／Lag												
Lead－Lag Optimize？												
Recall Mode	C－Max	C－Max		C－Max	C－Max		None	None		None	None	
Act Efft Green（s）	59.4	59.4		59.4	59.4			9.5			9.5	
Actuated g／C Ratio	0.79	0.79		0.79	0.79			0.13			0.13	
v／c Ratio	0.24	0.19		0.05	0.33			0.53			0.50	
Control Delay	6.2	2.8		3.4	3.3			34.9			20.9	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	6.2	2.8		3.4	3.3			34.9			20.9	
LOS	A	A		A	A			C			C	
Approach Delay		3.1			3.3			34.9			20.9	
Approach LOS		A			A			C			C	
Queue Length 50th（tt）	7	28		2	56			37			22	
Queue Length 95th（ft）	28	50		10	96			79			67	
Internal Link Dist（ft）		273			375			116			49	
Turn Bay Length（ft）	75			75								
Base Capacity（vph）	273	4020		513	4013			305			367	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v／c Ratio	0.24	0.19		0.05	0.33			0.34			0.34	
Intersection Summary												
Cycle Length： 75												
Actuated Cycle Length： 75												
Offset： 0 （0\％），Referenced to phase 4：EBTL and 8：WBTL，Start of Green												
Maximum v／c Ratio： 0.53												

1：Travis Street \＆N Fitzhugh Avenue

```
Intersection Signal Delay:5.5
Intersection Capacity Utilization 47.5%
Analysis Period (min) 15
```

Splits and Phases: 1: Travis Street \& N Fitzhugh Avenue

2: Buena Vista Street \& N Fitzhugh Avenue

：Travis Street \＆N Fitzhugh Avenue
Existing 3205－17．452

	7										\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个个官		${ }^{7}$	个个官			${ }_{\text {¢ }}$			${ }_{\dagger}$	
Traffic Volume（vph）	110	1769	38	16	781	67	40	46	22	19	46	56
Future Volume（vph）	110	1769	38	16	781	67	40	46	22	19	46	56
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	120	1923	41	17	849	73	43	50	24	21	50	61
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	120	1964	0	17	922	0	0	117	0	0	132	0
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split（s）	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split（s）	90.0	90.0		90.0	90.0		30.0	30.0		30.0	30.0	
Total Split（\％）	75．0\％	75．0\％		75．0\％	75．0\％		25．0\％	25．0\％		25．0\％	25．0\％	
Yellow Time（s）	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All－Red Time（s）	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time（s）	4.5	4.5		4.5	4.5			4.5			4.5	
Lead／Lag												
Lead－Lag Optimize？												
Recall Mode	C－Max	C－Max		C－Max	C－Max		None	None		None	None	
Act Efft Green（s）	97.3	97.3		97.3	97.3			13.7			13.7	
Actuated g／C Ratio	0.81	0.81		0.81	0.81			0.11			0.11	
v / C Ratio	0.27	0.48		0.13	0.23			0.83			0.63	
Control Delay	5.1	4.2		5.7	2.9			88.0			50.2	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	5.1	4.2		5.7	2.9			88.0			50.2	
LOS	A	A		A	A			F			D	
Approach Delay		4.3			3.0			88.0			50.2	
Approach LOS		A			A			F			D	
Queue Length 50th（tt）	18	136		2	46			82			74	
Queue Length 95th（t）	48	209		11	75			144			134	
Internal Link Dist（ft）		273			375			116			49	
Turn Bay Length（ft）	75			75								
Base Capacity（vph）	446	4114		133	4080			254			365	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v／c Ratio	0.27	0.48		0.13	0.23			0.46			0.36	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： $0(0 \%)$ ，Referenced to phase 4：EBTL and 8：WBTL，Start of GreenNatural Cycle： 55												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.83												

1：Travis Street \＆N Fitzhugh Avenue

```
Intersection Signal Delay: 8.8
Intersection Signal Delay: 8.8 
Analysis Period (min) 15
```

\qquad

2: Buena Vista Street \& N Fitzhugh Avenue

3: Buena Vista Street \& Lee Street

10/05/2018

HWL

Synchro 9 Report

1: Travis Street \& N Fitzhugh Avenue

1: Travis Street \& N Fitzhugh Avenue

2: Buena Vista Street \& N Fitzhugh Avenue

 3205-17.452\qquad

10/05/201

HWL

Synchro 9 Report

1：Travis Street \＆N Fitzhugh Avenue

	\rangle			\dagger				\uparrow	p			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个个中		\％	个个t			¢			¢	
Traffic Volume（vph）	113	1823	39	16	805	69	41	47	23	20	47	58
Future Volume（vph）	113	1823	39	16	805	69	41	47	23	20	47	58
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	123	1982	42	17	875	75	45	51	25	22	51	63
Shared Lane Trafic（\％）												
Lane Group Flow（vph）	123	2024	0	17	950	0	0	121	0	0	136	0
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split（s）	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split（s）	90.0	90.0		90.0	90.0		30.0	30.0		30.0	30.0	
Total Split（\％）	75．0\％	75．0\％		75．0\％	75．0\％		25．0\％	25．0\％		25．0\％	25．0\％	
Yellow Time（s）	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All－Red Time（s）	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time（s）	4.5	4.5		4.5	4.5			4.5			4.5	
Lead／Lag												
Lead－Lag Optimize？												
Recall Mode	C－Max	C－Max		C－Max	C－Max		None	None		None	None	
Act Effct Green（s）	96.9	96.9		96.9	96.9			14.1			14.1	
Actuated g／C Ratio	0.81	0.81		0.81	0.81			0.12			0.12	
v／c Ratio	0.29	0.49		0.14	0.23			0.85			0.63	
Control Delay	5.5	4.5		6.4	3.1			89.4			50.3	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	5.5	4.5		6.4	3.1			89.4			50.3	
LOS	A	A		A	A			F			D	
Approach Delay		4.6			3.1			89.4			50.3	
Approach LOS		A			A			F			D	
Queue Length 50th（tt）	19	146		2	49			86			77	
Queue Length 95th（ft）	52	224		12	80			148			137	
Internal Link Dist（ft）		273			375			116			49	
Turn Bay Length（ft）	75			75								
Base Capacity（vph）	430	4095		121	4062			252			363	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v／c Ratio	0.29	0.49		0.14	0.23			0.48			0.37	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： $0(0 \%)$ ，Referenced to phase 4：EBTL and 8：WBTL，Start of Green												
Natural Cycle： 55												
Control Type：Actuated－Coordinated												

1：Travis Street \＆N Fitzhugh Avenue

Intersection Signal Delay： 9.0	Intersection LOS：A
Intersection Capacity Utilization 63.7%	ICU Level of Service B
Analysis Period（min） 15	
Splits and Phases：	1：Travis Street \＆N Fitzhugh Avenue

2: Buena Vista Street \& N Fitzhugh Avenue

10/05/201

：Travis Street \＆N Fitzhugh Avenue
Buildout

3205－17．452											Timing Plan：AM	
	\rangle			7			4	\uparrow	p		\downarrow	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	个个中		＊	个个t			¢			¢	
Traffic Volume（vph）	67	718	15	26	1244	42	43	37	23	42	16	
Future Volume（vph）	67	718	15	26	1244	42	43	37	23	42	16	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.9
Adj．Flow（vph）	73	780	16	28	1352	46	47	40	25	46	17	
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	73	796	0	28	1398	0	0	112	0	0	139	
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split（s）	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split（s）	55.0	55.0		55.0	55.0		20.0	20.0		20.0	20.0	
Total Split（\％）	73．3\％	73．3\％		73．3\％	73．3\％		26．7\％	26．7\％		26．7\％	26．7\％	
Yellow Time（s）	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All－Red Time（s）	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time（s）	4.5	4.5		4.5	4.5			4.5			4.5	
Lead／Lag												
Lead－Lag Optimize？												
Recall Mode	C－Max	C－Max		C－Max	C－Max		None	None		None	None	
Act Efft Green（s）	58.9	58.9		58.9	58.9			10.0			10.0	
Actuated g／C Ratio	0.79	0.79		0.79	0.79			0.13			0.13	
v／c Ratio	0.29	0.20		0.06	0.35			0.58			0.54	
Control Delay	7.8	3.0		3.7	3.6			36.8			23.1	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	7.8	3.0		3.7	3.6			36.8			23.1	
LOS	A	A		A	A			D			C	
Approach Delay		3.4			3.6			36.8			23.1	
Approach LOS		A			A			D			C	
Queue Length 50th（tt）	9	30		3	63			42			28	
Queue Length 95th（tt）	35	54		11	106			86			75	
Internal Link Dist（ft）		273			375			116			49	
Turn Bay Length（ft）	75			75								
Base Capacity（vph）	251	3984		496	3978			293			360	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v／c Ratio	0.29	0.20		0.06	0.35			0.38			0.39	
Intersection Summary												
Cycle Length： 75												
Actuated Cycle Length： 75												
Offset： 0 （ 0% ），Referenced to phase 4：EBTL and 8：WBTL，Start of GreenNatural Cycle： 60												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.58												

1：Travis Street \＆N Fitzhugh Avenue

```
Intersection Signnal Delay: 6.1
Intersection Capacity Utilization 49.3%
Analysis Period (min) 15
```

Splits and Phases: 1: Travis Street \& N Fitzhugh Avenue

2: Buena Vista Street \& N Fitzhugh Avenue

3: Buena Vista Street \& Lee Street
3205-17.452 Timing Plan: AM

10/05/2018

HWL

Synchro 9 Report

4: Buena Vista Street \& Site Driveway

5: N Fitzhugh Avenue \& Site Driveway 2
3205-17.452 Timing Plan: AM

10/05/201

HWL

Synchro 9 Repor
3205-17.452 Timing Plan: AM

1：Travis Street \＆N Fitzhugh Avenue
Buildout 3205－17．452

	4			7				\dagger	p			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	个个角		\％	个个官			${ }_{\dagger}$			\dagger	
Traffic Volume（vph）	117	1826	39	16	815	69	45	47	23	26	50	58
Future Volume（vph）	117	1826	39	16	815	69	45	47	23	26	50	58
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	127	1985	42	17	886	75	49	51	25	28	54	63
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	127	2027	0	17	961	0	0	125	0	0	145	0
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split（s）	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split（s）	90.0	90.0		90.0	90.0		30.0	30.0		30.0	30.0	
Total Split（\％）	75．0\％	75．0\％		75．0\％	75．0\％		25．0\％	25．0\％		25．0\％	25．0\％	
Yellow Time（s）	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All－Red Time（s）	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time（s）	4.5	4.5		4.5	4.5			4.5			4.5	
Lead／Lag												
Lead－Lag Optimize？												
Recall Mode	C－Max	C－Max		C－Max	C－Max		None	None		None	None	
Act Effict Green（s）	96.3	96.3		96.3	96.3			14.7			14.7	
Actuated g／C Ratio	0.80	0.80		0.80	0.80			0.12			0.12	
v／c Ratio	0.30	0.50		0.14	0.24			0.86			0.67	
Control Delay	5.9	4.8		6.8	3.2			91.3			54.8	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	5.9	4.8		6.8	3.2			91.3			54.8	
LOS	A	A		A	A			F			D	
Approach Delay		4.8			3.3			91.3			54.8	
Approach LOS		A			A			F			D	
Queue Length 50th（ft）	21	152		2	51			89			87	
Queue Length 95th（ft）	57	235		12	84			152			149	
Internal Link Dist（ft）		273			375			116			49	
Turn Bay Length（tt）	75			75								
Base Capacity（vph）	421	4069		119	4037			245			352	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v／c Ratio	0.30	0.50		0.14	0.24			0.51			0.41	
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 120												
Offset： 0 （0\％），Referenced to phase 4：EBTL and 8：WBTL，Start of Green												
Natural Cycle： 55												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.86												

1：Travis Street \＆N Fitzhugh Avenue

```
Intersection Signal Delay:9.7
Intersection Capacity Utilization 63.4% Analysis Period（min） 15
```

4%

Intersection LOS：A

$\begin{array}{ll}\text { Intersection Capacity Utilization 63．4\％} & \text { ICU Level of Service B } \\ \text { Analysis Period（min）} 15\end{array}$

2: Buena Vista Street \& N Fitzhugh Avenue

 3205-17.452

0/05/201

3: Buena Vista Street \& Lee Street
3205-17.452 Timing Plan: PM

10/05/2018

HWL

Synchro 9 Report

4: Buena Vista Street \& Site Driveway

5: N Fitzhugh Avenue \& Site Driveway 2
3205-17.452 Timing Plan: PM

10/05/201

HWL
3205-17.452 Timing Plan: PM

：Travis Street \＆N Fitzhugh Avenue

	7			\checkmark			4	\uparrow				\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	个个家		\％	个中t			\dagger			\uparrow	
Traffic Volume（vph）	70	754	16	27	1307	44	45	39	24	43	17	74
Future Volume（vph）	70	754	16	27	1307	44	45	39	24	43	17	74
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj．Flow（vph）	76	820	17	29	1421	48	49	42	26	47	18	80
Shared Lane Traffic（\％）												
Lane Group Flow（vph）	76	837	0	29	1469	0	0	117	0	0	145	0
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial（s）	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split（s）	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split（s）	55.0	55.0		55.0	55.0		20.0	20.0		20.0	20.0	
Total Split（\％）	73．3\％	73．3\％		73．3\％	73．3\％		26．7\％	26．7\％		26．7\％	26．7\％	
Yellow Time（s）	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All－Red Time（s）	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust（s）	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time（s）	4.5	4.5		4.5	4.5			4.5			4.5	
Lead／Lag												
Lead－Lag Optimize？												
Recall Mode	C－Max	C－Max		C－Max	C－Max		None	None		None	None	
Act Efft Green（s）	55.8	55.8		55.8	55.8			10.2			10.2	
Actuated g／C Ratio	0.74	0.74		0.74	0.74			0.14			0.14	
v／c Ratio	0.35	0.22		0.06	0.39			0.59			0.57	
Control Delay	9.9	3.4		3.8	4.1			37.2			25.8	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	9.9	3.4		3.8	4.1			37.2			25.8	
LOS	A	A		A	A			D			C	
Approach Delay		3.9			4.1			37.2			25.8	
Approach LOS		A			A			D			C	
Queue Length 50th（t）	10	33		3	69			44			35	
Queue Length 95th（t）	43	59		12	116			88			83	
Internal Link Dist（ft）		273			375			116			49	
Turn Bay Length（tt）	75			75								
Base Capacity（vph）	216	3771		449	3765			293			353	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v／c Ratio	0.35	0.22		0.06	0.39			0.40			0.41	
Intersection Summary												
Cycle Length： 75												
Actuated Cycle Length： 75												
Offset： $0(0 \%)$ ，Referenced to phase 4：EBTL and $8: W \mathrm{WBTL}$ ，Start of GreenNatural Cycle： 60												
Control Type：Actuated－Coordinated												
Maximum v／c Ratio： 0.59												

1：Travis Street \＆N Fitzhugh Avenue

```
Intersection Signal Delay: 6.7
Intersection Capacity Utilization 50．9\％ Analysis Period（min） 15
```


1: Travis Street \& N Fitzhugh Avenue
Horizon 3205-17.452

	4			\checkmark				\uparrow	p			\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	个中t		\%	¢ $\uparrow \uparrow$			¢			¢	
Traffic Volume (vph)	123	1919	41	17	857	73	47	50	24	27	53	61
Future Volume (vph)	123	1919	41	17	857	73	47	50	24	27	53	61
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	134	2086	45	18	932	79	51	54	26	29	58	66
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	134	2131	0	18	1011	0	0	131	0	0	153	0
Turn Type	Perm	NA										
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	90.0	90.0		90.0	90.0		30.0	30.0		30.0	30.0	
Total Split (\%)	75.0\%	75.0\%		75.0\%	75.0\%		25.0\%	25.0\%		25.0\%	25.0\%	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	
Total Lost Time (s)	4.5	4.5		4.5	4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	C-Max	C-Max		C-Max	C-Max		None	None		None	None	
Act Effit Green (s)	95.5	95.5		95.5	95.5			15.5			15.5	
Actuated g/C Ratio	0.80	0.80		0.80	0.80			0.13			0.13	
v/c Ratio	0.34	0.53		0.17	0.25			0.87			0.68	
Control Delay	6.9	5.3		8.5	3.5			91.4			54.6	
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	
Total Delay	6.9	5.3		8.5	3.5			91.4			54.6	
LOS	A	A		A	A			F			D	
Approach Delay		5.4			3.6			91.4			54.6	
Approach LOS		A			A			F			D	
Queue Length 50th (ft)	24	172		3	57			94			93	
Queue Length 95th (ft)	66	265		14	93			159			156	
Internal Link Dist (ft)		273			375			116			49	
Turn Bay Length (tt)	75			75								
Base Capacity (vph)	394	4037		103	4004			244			353	
Starvation Cap Reductn	0	0		0	0			0			0	
Spillback Cap Reductn	0	0		0	0			0			0	
Storage Cap Reductn	0	0		0	0			0			0	
Reduced v/c Ratio	0.34	0.53		0.17	0.25			0.54			0.43	
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Offset: $0(0 \%)$, Referenced to phase 4:EBTL and 8:WBTL, Start of GreenNatural Cycle: 60												
Control Type: Actuated-Coordinated												
Maximum v/c Ratio: 0.87												

1: Travis Street \& N Fitzhugh Avenue

Intersection Signal Delay: 10.1 Intersection Capacity Utilization
 Intersection Capacity Utilization 65.9\%

\qquad Intersection LOS: B ICU Level of Service C

[^0]: ${ }^{1}$ Land Use Codes (LUCs) from Trip Generation Manual, published by the Institute of Transportation Engineers.
 ${ }^{2}$ Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.
 ${ }^{3}$ Enter trips assuming no transit or non-motorized trips (as assumed in ITE Trip Generation Manual).
 ${ }^{4}$ Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be
 ${ }^{5}$ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.
 ${ }^{6}$ Person-Trips
 *Indicates computation that has been rounded to the nearest whole number.

[^1]: ${ }^{2}$ Person-Trips
 ${ }^{3}$ Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator
 *Indicates computation that has been rounded to the nearest whole number.

